http://modernperlbooks.com/books/modern_perl_2014/
http://unnovative.net/perl.html
Perl Quiz!!'!!l
Data: :Dumper
References

Finish up scan.pl

Perl Bootcamp Day #4 (2/24)

Perl Bootcamp Day #4 (4/24)

SICK REFERENCE, BRO

- of

Perl Bootcamp Day #4 (5/24)

* Avold list flattening
* Nested data

* Efficliency

* Qut parameters

* Cyclic data!?!

Why wouldn't you want to use them?

Perl Bootcamp Day #4 (6/24)

) I—1 - — _ S

- f\
(AN N |

""-..-ﬂ"'—

Whenever we pass values i1nto a subroutine,
they arrive 1n a newly copied list

Now, that's one list, singular

Perl Bootcamp Day #4 (7/24)

1 O Y B [o -
/ AN 4 Nt NS |
| I ~ AN
AN |

* What do you do 1if you really wanted to pass 1n
multiple distinct lists?

* What happens when you pass i1n a long list of arguments,
or a few really big strings?

None of this sounds very efficilient!

Perl Bootcamp Day #4 (8/24)

| . - /1 l-— I -
72 VAR 1N DI VSRS L B LUV R (R I T O
A A N

Paraphrasing 'perldoc perlreftut’:

Fortunately, you only need to knhow 10% to get 90% of the benefit

Perl Bootcamp Day #4 (9/24)

I - R L oy
SN N) - T
A I I 745 NS DS D B N R VN [N [VS | GO

This 1s that 10%

* There are two ways to make a reference

* There are three ways to use it once you have 1it

Perl Bootcamp Day #4 (10/24)

I I N I
250 N VA | I IV B
e S R

If you put a \ 1n front of a variable,
you get a reference to that variable.

my $ref = \$scalar;

Perl Bootcamp Day #4 (11/24)

Perl Bootcamp Day #4 (12/24)

I I
/ -) - . _I|/ 7/
| | /]

[ITEMS] makes a new, anonymous array,
and returns a reference to that array

my $array = [1, "two’', 3.0];

{ ITEMS } makes a new, anonymous hash,
and returns a reference to that hash

my $hash = {
key == 'value',
guanjian => 'shu',
llave => 'valor',

};

Perl Bootcamp Day #4 (13/24)

__//__/\ |_|__,_

1111 T I e I O
| 1] (_-</ -) | |||f-_)|_- |
| |\ |

Prefix the reference with an extra sigil for each level of dereference

Perl Bootcamp Day #4

(14/24)

Perl Bootcamp Day #4 (15/24)

You can always use an array reference 1n curly braces
in place of the name of an array

For example:
@{$aref}
instead of
@$aref
or

@a_real_array

Perl Bootcamp Day #4 (16/24)

| 1| | | -~ | 1— 011 1-0—7
| -1 (<=~ -2) 1 7117 -21- - _]l-\
N7 A N I T A\ A |/

Use Rule #2 1s all you really need
it tells you how to do absolutely everything
yvou ever heed to do with references

But the most common thing to do with an array or a hash

1s to extract a single element,
and the Use Rule 2 notation 1s cumbersome

Perl Bootcamp Day #4 (17/24)

| 1| | | -~ | 1— 011 1-0—7
| -1 (<=~ -2) 1 7117 -21- - _]l-\
N7 A N I T A\ A |/

Use the dereferencing arrow -=

Hard to read
${%aref}[3] ${Shref}{red}

Write these instead
Saref-=[3] $Shref->{red}

Perl Bootcamp Day #4 (18/24)

This core module 1s invaluable as you work with
complex, nested data structures based upon references

Perl Bootcamp Day #4 (19/24)

It works quite similarly to the debugger's x command

Perl Bootcamp Day #4 (20/24)

Perl Bootcamp Day #4 (21/24)

As 1t turns out, the output of Data::Dumper's methods
happens to be valid Perl code which will reconstitute the dumped data

You can (ab)use this feature to serialize data and impliment a rudimentary
configuration file system

Perl Bootcamp Day #4 (22/24)

Perl Bootcamp Day #4 (23/24)

