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# Perl Quiz!!'!!l
# Data: :Dumper
# References

# Finish up scan.pl
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SICK REFERENCE, BRO
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* Avold list flattening
* Nested data

* Efficliency

* Qut parameters

* Cyclic data!?!

Why wouldn't you want to use them?
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Whenever we pass values i1nto a subroutine,
they arrive 1n a newly copied list

Now, that's one list, singular
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* What do you do 1if you really wanted to pass 1n
multiple distinct lists?

* What happens when you pass i1n a long list of arguments,
or a few really big strings?

None of this sounds very efficilient!
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Paraphrasing 'perldoc perlreftut’:

Fortunately, you only need to knhow 10% to get 90% of the benefit
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This 1s that 10%

* There are two ways to make a reference

* There are three ways to use it once you have 1it
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If you put a \ 1n front of a variable,
you get a reference to that variable.

my $ref = \$scalar;
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[ ITEMS ] makes a new, anonymous array,
and returns a reference to that array

my $array = [ 1, "two’', 3.0 ];

{ ITEMS } makes a new, anonymous hash,
and returns a reference to that hash

my $hash = {
key == 'value',
guanjian => 'shu',
llave => 'valor',

};
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Prefix the reference with an extra sigil for each level of dereference
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You can always use an array reference 1n curly braces
in place of the name of an array

For example:
@{$aref}
instead of
@$aref
or

@a_real_array
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Use Rule #2 1s all you really need
it tells you how to do absolutely everything
yvou ever heed to do with references

But the most common thing to do with an array or a hash

1s to extract a single element,
and the Use Rule 2 notation 1s cumbersome
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Use the dereferencing arrow -=

Hard to read
${%aref}[3] ${Shref}{red}

Write these instead
Saref-=[3] $Shref->{red}
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This core module 1s invaluable as you work with
complex, nested data structures based upon references
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It works quite similarly to the debugger's x command
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As 1t turns out, the output of Data::Dumper's methods
happens to be valid Perl code which will reconstitute the dumped data

You can (ab)use this feature to serialize data and impliment a rudimentary
configuration file system
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